本页目录

CSP 202206 T1-T5题解

T1 归一化处理

用了一下方差的变形:

C++
#include <iostream>
#include <cmath>
using namespace std;
int n,a[1005];
double avg,avg_sq;
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>a[i];
        avg+=a[i];
        avg_sq+=a[i]*a[i];
    }
    avg/=n,avg_sq/=n;
    for(int i=0;i<n;i++)
    {
        cout<<(a[i]-avg)/sqrt(avg_sq-avg*avg)<<endl;
    }
    return 0;
}
/*
in:
7
-4 293 0 -22 12 654 1000

out:
-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082
*/

T2 寻宝!大冒险!

C++
#include <iostream>
#include <unordered_set>
using namespace std;
int n,l,s,ans;
int t[1005][2];//树的坐标
int g[55][55];//藏宝图
unordered_set<long long> st;//用一个long long存储坐标x*(1e9+1)+y
bool check(int x,int y)
{
    for(int i=0;i<=s;i++)
    {
        for(int j=0;j<=s;j++)
        {
            long long p=(1e9L+1)*(x+i)+y+j;
            //绿化图坐标(x+i,y+j)与藏宝图上坐标(i,j)不对应,匹配失败
            if((st.find(p)!=st.end())^g[s-i][j])
            {
                return false;
            }
        }
    }
    return true;
}
int main()
{
    cin>>n>>l>>s;
    for(int i=0;i<n;i++)
    {
        cin>>t[i][0]>>t[i][1];
        long long p=(1e9L+1)*t[i][0]+t[i][1];
        st.insert(p);
    }
    for(int i=0;i<=s;i++)
    {
        for(int j=0;j<=s;j++)
        {
            cin>>g[i][j];
        }
    }
    for(int i=0;i<n;i++)
    {
        int x=t[i][0],y=t[i][1];
        if(x+s<=l&&y+s<=l)
        {
            ans+=check(x,y);
        }
    }
    cout<<ans<<endl;
    return 0;
}
/*
in:
5 100 2
0 0
1 1
2 2
3 3
4 4
0 0 1
0 1 0
1 0 0

out:
3
*/

T3 角色授权

C++
#include <iostream>
#include <unordered_set>
#include <unordered_map>
#define N 505
using namespace std;
int n,m,q;
string s;
struct USER{
    string username;
    int ng;
    unordered_set<string> gset;
};
struct ROLE{
    string rolename;
    int nv,no,nn;//操作、资源种类、资源名称
    unordered_set<string> vset,oset,nset;
    bool vadmin,oadmin;//允许的操作/资源是否含有"*"
}role[N];
struct RBAC{
    string rolename;
    int ns;
    unordered_set<string> sset_user;
    unordered_set<string> sset_group;
}rbac[N];//role-based access control
struct QUERY{
    USER user;
    string v,o,n;
};
unordered_map<string,int> rolemap;//角色名--id
//判断一个角色能否对某个资源执行某个操作
bool check(int &roleid,string &qv,string &qo,string &qn)
{
    bool ok=true;
    ROLE &r=role[roleid];
    ok&=r.vadmin||r.vset.find(qv)!=r.vset.end();
    if(!ok) return false;
    ok&=r.oadmin||r.oset.find(qo)!=r.oset.end();
    if(!ok) return false;
    if(r.nn==0) return true;
    ok&=r.nset.find(qn)!=r.nset.end();
    return ok;
}
bool query(QUERY &q)
{
    for(int i=0;i<m;i++)
    {
        RBAC &ac=rbac[i];
        int roleid=rolemap[ac.rolename];
        if(ac.sset_user.find(q.user.username)==ac.sset_user.end())//q.user.username不在ac.sset_user中
        {
            bool ok=false;
            for(auto &elem:ac.sset_group)
            {
                if(q.user.gset.find(elem)!=ac.sset_group.end())
                {
                    ok=true;
                    break;
                }
            }
            if(!ok) continue;//且q.user.gset与ac.sset_group没有交集,就跳过对这个角色检查
        }
        if(check(roleid,q.v,q.o,q.n)) return true;
    }
    return false;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m>>q;
    for(int i=0;i<n;i++)
    {
        cin>>role[i].rolename;
        rolemap[role[i].rolename]=i;
        cin>>role[i].nv;
        for(int j=0;j<role[i].nv;j++)
        {
            cin>>s;
            role[i].vset.emplace(s);
            if(s=="*") role[i].vadmin=true;
        }
        cin>>role[i].no;
        for(int j=0;j<role[i].no;j++)
        {
            cin>>s;
            role[i].oset.emplace(s);
            if(s=="*") role[i].oadmin=true;
        }
        cin>>role[i].nn;
        for(int j=0;j<role[i].nn;j++)
        {
            cin>>s;
            role[i].nset.emplace(s);
        }
    }
    for(int i=0;i<m;i++)
    {
        cin>>rbac[i].rolename;
        cin>>rbac[i].ns;
        for(int j=0;j<rbac[i].ns;j++)
        {
            char typ;
            cin>>typ>>s;
            if(typ=='u')
            {
                rbac[i].sset_user.emplace(s);
            }
            else
            {
                rbac[i].sset_group.emplace(s);
            }
        }
    }
    for(int i=0;i<q;i++)
    {
        QUERY q;
        cin>>q.user.username;
        cin>>q.user.ng;
        for(int j=0;j<q.user.ng;j++)
        {
            cin>>s;
            q.user.gset.emplace(s);
        }
        cin>>q.v>>q.o>>q.n;
        cout<<query(q)<<endl;
    }
    return 0;
}
/*
in:
1 2 3
op 1 open 1 door 0
op 1 g sre
op 1 u xiaop
xiaoc 2 sre ops open door room302
xiaop 1 ops open door room501
xiaoc 2 sre ops remove door room302

out:
1
1
0
*/

T4 光线追踪

因为反射面的总长度,可以用map存整数格点,注意不存端点。

C++
#include <iostream>
#include <map>
#include <unordered_map>
#define N 100005
using namespace std;
int m,mirrors[N][4];
struct RPOINT{
    //反射面上的点
    int k;
    double a;
};
struct RAYPOS{
    int x,y,d;
    double I;
    int ttl;
};
unordered_map<int,map<int,RPOINT>> px,py;
int abs(int x){return x>0?x:-x;}
void add(int x1,int y1,int x2,int y2,double a)
{
    for(int x=x1,y=y1,dx=abs(x2-x1)/(x2-x1),dy=abs(y2-y1)/(y2-y1);;x+=dx,y+=dy)
    {
        if(x==x1) continue;
        if(x==x2) break;
        px[x][y]=(RPOINT){dy/dx,a};
        py[y][x]=(RPOINT){dy/dx,a};
    }
    return;
}
void del(int k)
{
    int x1=mirrors[k][0];
    int y1=mirrors[k][1];
    int x2=mirrors[k][2];
    int y2=mirrors[k][3];
    for(int x=x1,y=y1,dx=abs(x2-x1)/(x2-x1),dy=abs(y2-y1)/(y2-y1);;x+=dx,y+=dy)
    {
        if(x==x1) continue;
        if(x==x2) break;
        px[x].erase(y);
        py[y].erase(x);
    }
    return;
}
RAYPOS query(RAYPOS p)
{
    int x=p.x,y=p.y,d=p.d,ttl=p.ttl;
    double I=p.I;
    if(I<1) return (RAYPOS){0,0,0,0,0};
    if(d==0)
    {
        auto it=py[y].upper_bound(x);
        if(it!=py[y].end())
        {
            int nx=it->first;
            int dt=nx-x;
            if(ttl<dt) return (RAYPOS){x+ttl,y,0,I,0};
            else
            {
                int k=it->second.k;
                double a=it->second.a;
                if(k==1) return query((RAYPOS){nx,y,1,I*a,ttl-dt});
                else return query((RAYPOS){nx,y,3,I*a,ttl-dt});
            }
        }
        else return (RAYPOS){x+ttl,y,0,I,0};
    }
    else if(d==1)
    {
        auto it=px[x].upper_bound(y);
        if(it!=px[x].end())
        {
            int ny=it->first;
            int dt=ny-y;
            if(ttl<dt) return (RAYPOS){x,y+ttl,0,I,0};
            else
            {
                int k=it->second.k;
                double a=it->second.a;
                if(k==1) return query((RAYPOS){x,ny,0,I*a,ttl-dt});
                else return query((RAYPOS){x,ny,2,I*a,ttl-dt});
            }
        }
        else return (RAYPOS){x,y+ttl,0,I,0};
    }
    else if(d==2)
    {
        auto it=py[y].lower_bound(x);
        if(it!=py[y].begin())
        {
            it--;
            int nx=it->first;
            int dt=x-nx;
            if(ttl<dt) return (RAYPOS){x-ttl,y,0,I,0};
            else
            {
                int k=it->second.k;
                double a=it->second.a;
                if(k==1) return query((RAYPOS){nx,y,3,I*a,ttl-dt});
                else return query((RAYPOS){nx,y,1,I*a,ttl-dt});
            }
        }
        else return (RAYPOS){x-ttl,y,0,I,0};
    }
    else if(d==3)
    {
        auto it=px[x].lower_bound(y);
        if(it!=px[x].begin())
        {
            it--;
            int ny=it->first;
            int dt=y-ny;
            if(ttl<dt) return (RAYPOS){x,y-ttl,0,I,0};
            else
            {
                int k=it->second.k;
                double a=it->second.a;
                if(k==1) return query((RAYPOS){x,ny,2,I*a,ttl-dt});
                else return query((RAYPOS){x,ny,0,I*a,ttl-dt});
            }
        }
        else return (RAYPOS){x,y-ttl,0,I,0};
    }
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>m;
    for(int i=0;i<m;i++)
    {
        int opt;
        cin>>opt;
        if(opt==1)
        {
            int x1,y1,x2,y2;
            double a;
            cin>>x1>>y1>>x2>>y2>>a;
            mirrors[i][0]=x1;
            mirrors[i][1]=y1;
            mirrors[i][2]=x2;
            mirrors[i][3]=y2;
            add(x1,y1,x2,y2,a);
        }
        else if(opt==2)
        {
            int k;
            cin>>k;
            del(k-1);
        }
        else if(opt==3)
        {
            int x,y,d,t;
            double I;
            cin>>x>>y>>d>>I>>t;
            RAYPOS ans=query((RAYPOS){x,y,d,I,t});
            cout<<ans.x<<' '<<ans.y<<' '<<int(ans.I)<<endl;
        }
    }
    return 0;
}
/*
in:
7
1 0 4 2 2 0.4
1 2 2 0 0 0.45
3 -1 3 0 6 5
3 1 5 3 2.4 5
3 0 2 0 3 4
2 1
3 1 5 3 2.4 5

out:
0 1 1
0 0 0
4 2 3
0 1 1
*/

T5 PS无限版

线段树题,因为涉及到查询平方和,还需要额外维护乘积交叉项;题目中涉及的二维坐标变换可以在齐次坐标下使用三阶矩阵表示,由于第三行总是,在下面代码中省略,只用mat[6]表示一个三阶矩阵。

C++
#include <iostream>
#include <cmath>
#include <iomanip>
#define N 500005
using namespace std;
int n,m;
int lc(int f){return f<<1;}//左子
int rc(int f){return f<<1|1;}//右子

struct POS{
    double x,y;
    friend POS operator +(POS a,POS b)
    {
        POS ans;
        ans.x=a.x+b.x;
        ans.y=a.y+b.y;
        return ans;
    }
}a[N];

struct TAGVAL{
    double mat[6];//省略了齐次坐标的第三行[0 0 1]
}const I{1,0,0,0,1,0};

TAGVAL T(double dx,double dy){return TAGVAL{1,0,dx,0,1,dy};}//平移
TAGVAL R(double t){return TAGVAL{cos(t),-sin(t),0,sin(t),cos(t),0};}//绕原点旋转
TAGVAL S(double k){return TAGVAL{k,0,0,0,k,0};}//绕原点缩放

struct NODE{
    POS sum;//和(x,y)
    POS sqs;//平方和(x**2,y**2)
    double xys;//交叉项和xy
    bool flag;//是否打了tag
    TAGVAL tag;
}tree[4*N];

//matmul 矩阵乘
TAGVAL mm(TAGVAL A,TAGVAL B)
{
    TAGVAL result;
    for(int i=0;i<6;i++)
    {
        result.mat[i]=A.mat[i/3*3]*B.mat[i%3]+A.mat[i/3*3+1]*B.mat[i%3+3];
    }
    result.mat[2]+=A.mat[2];
    result.mat[5]+=A.mat[5];
    return result;
}

//对向量p应用仿射变换M,变为Mp
POS affine(POS p,double a,double b,double c,double d,double e,double g)
{
    //M=[a b c
    //   d e g      (f变量名被占用了)
    //   0 0 1]     (省略了齐次坐标的第三行)
    return POS{a*p.x+b*p.y+c,d*p.x+e*p.y+g};
}

//合并tgv至 <管辖[l,r]区间的f节点> 的tag值,同时更新树上值
void mergetag(int l,int r,int f,TAGVAL tgv)
{
    //原本TAG(M1),父亲分发下TAG(M2)
    //现在TAG(M2*M1)
    int len=r-l+1;
    POS sum=tree[f].sum,sqs=tree[f].sqs;
    double xys=tree[f].xys;
    double a=tgv.mat[0],b=tgv.mat[1],c=tgv.mat[2],d=tgv.mat[3],e=tgv.mat[4],g=tgv.mat[5];
    tree[f].sum=affine(sum,a,b,c*len,d,e,g*len);
    tree[f].sqs=affine(sqs,a*a,b*b,c*c*len+2*a*b*xys,d*d,e*e,g*g*len+2*d*e*xys)
               +affine(sum,2*a*c,2*b*c,0,2*d*g,2*e*g,0);
    tree[f].xys=a*d*sqs.x+b*e*sqs.y+c*g*len+(a*e+b*d)*xys+(a*g+c*d)*sum.x+(b*g+c*e)*sum.y;
    tree[f].tag=mm(tgv,tree[f].tag);//M2*M1
    tree[f].flag=true;
    return;
}

//用子节点更新 <f节点>
void pushup(int f)
{
    tree[f].sum=tree[lc(f)].sum+tree[rc(f)].sum;
    tree[f].sqs=tree[lc(f)].sqs+tree[rc(f)].sqs;
    tree[f].xys=tree[lc(f)].xys+tree[rc(f)].xys;
    return;
}

//将 <管辖[l,r]区间的f节点> 的tag值下发至子节点
void pushdown(int l,int r,int f)
{
    if(l==r) return;
    int mid=l+(r-l)/2;
    mergetag(l,mid,lc(f),tree[f].tag);
    mergetag(mid+1,r,rc(f),tree[f].tag);
    tree[f].tag=I;
    tree[f].flag=false;
    return;
}

//在tree[f]建立一个管辖[l,r]的节点
void build(int l,int r,int f)
{
    tree[f].flag=false;
    tree[f].tag=I;
    if(l==r)
    {
        tree[f].sum=a[l];
        tree[f].sqs=POS{a[l].x*a[l].x,a[l].y*a[l].y};
        tree[f].xys=a[l].x*a[l].y;
        return;
    }
    int mid=l+(r-l)/2;
    build(l,mid,lc(f));
    build(mid+1,r,rc(f));
    pushup(f);
    return;
}

//将tgv合并至区间[ql,qr]的tag值,当前在管辖[l,r]区间的f节点
void update(int ql,int qr,int l,int r,int f,TAGVAL tgv)
{
    //当前区间是查询区间的子集,修改
    if(ql<=l&&r<=qr)
    {
        mergetag(l,r,f,tgv);
        return;
    }
    int mid=l+(r-l)/2;
    if(tree[f].flag) pushdown(l,r,f);//访问到有标记的节点就下放
    if(ql<=mid) update(ql,qr,l,mid,lc(f),tgv);
    if(qr>mid) update(ql,qr,mid+1,r,rc(f),tgv);
    pushup(f);
    return;
}

//求区间[ql,qr]的和,当前在管辖[l,r]区间的f节点
POS getsum(int ql,int qr,int l,int r,int f)
{
    //当前区间是查询区间的子集,返回
    if(ql<=l&&r<=qr) return tree[f].sum;
    int mid=l+(r-l)/2;
    if(tree[f].flag) pushdown(l,r,f);//访问到有标记的节点就下放
    POS ans={0,0};
    if(ql<=mid) ans=ans+getsum(ql,qr,l,mid,lc(f));
    if(qr>mid) ans=ans+getsum(ql,qr,mid+1,r,rc(f));
    return ans;
}

//求区间[ql,qr]的平方和,当前在管辖[l,r]区间的f节点
POS getsqs(int ql,int qr,int l,int r,int f)
{
    //当前区间是查询区间的子集,返回
    if(ql<=l&&r<=qr) return tree[f].sqs;
    int mid=l+(r-l)/2;
    if(tree[f].flag) pushdown(l,r,f);//访问到有标记的节点就下放
    POS ans={0,0};
    if(ql<=mid) ans=ans+getsqs(ql,qr,l,mid,lc(f));
    if(qr>mid) ans=ans+getsqs(ql,qr,mid+1,r,rc(f));
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    cout.precision(4);
    cout.setf(ios::fixed);
    for(int i=0;i<n;i++)
    {
        cin>>a[i+1].x>>a[i+1].y;
    }
    build(1,n,1);
    for(int i=0;i<m;i++)
    {
        int q;
        double l,r,a,b,theta,k,y0;
        cin>>q>>l>>r;
        if(q==1)
        {
            cin>>a>>b;
            update(l,r,1,n,1,T(a,b));
        }
        else if(q==2)
        {
            cin>>a>>b>>theta;
            TAGVAL tgv=I;
            tgv=mm(T(-a,-b),tgv);
            tgv=mm(R(theta),tgv);//旋转
            tgv=mm(T(a,b),tgv);
            update(l,r,1,n,1,tgv);
        }
        else if(q==3)
        {
            cin>>a>>b>>k;
            TAGVAL tgv=I;
            tgv=mm(T(-a,-b),tgv);
            tgv=mm(S(k),tgv);//缩放
            tgv=mm(T(a,b),tgv);
            update(l,r,1,n,1,tgv);
        }
        else if(q==4)
        {
            cin>>theta>>y0;
            double t=tan(theta);
            TAGVAL tgv={
                1-t*t, 2*t,  -2*y0*t,
                2*t,   t*t-1, 2*y0,
            };
            tgv=mm(S(1/(1+t*t)),tgv);
            update(l,r,1,n,1,tgv);
        }
        else if(q==5)
        {
            cin>>theta>>y0;
            double t=tan(theta);
            TAGVAL tgv={
                1, t,  -y0*t,
                t, t*t, y0
            };
            tgv=mm(S(1/(1+t*t)),tgv);
            update(l,r,1,n,1,tgv);
        }
        else if(q==6)
        {
            POS sum=getsum(l,r,1,n,1);
            cout<<sum.x/(r-l+1)<<' '<<sum.y/(r-l+1)<<'\n';
        }
        else if(q==7)
        {
            cin>>a>>b;
            POS sum=getsum(l,r,1,n,1);
            POS sqs=getsqs(l,r,1,n,1);
            double ans=sqs.x+sqs.y-2*a*sum.x-2*b*sum.y+(a*a+b*b)*(r-l+1);
            cout<<ans<<'\n';
        }
    }
    return 0;
}
/*
in:
10 20
26.389153 -31.339463
-98.664509 -58.061567
16.023894 14.489272
-67.840842 -74.793309
19.790708 -87.062719
31.541964 88.441505
-75.918013 24.526470
57.288832 -39.033977
38.274184 -67.446883
-90.906424 -73.528612
3 4 4 32.938694 -6.774595 1.000221
1 2 6 69.965610 -39.563795
4 3 10 -1.399075 38.282976
4 6 7 -1.016301 61.080461
7 9 10 76.549276 22.856189
7 3 7 -96.501727 5.585970
6 8 9
4 2 8 1.215917 -90.918350
7 4 8 55.948842 38.373278
1 5 9 -83.845362 -6.619437
5 6 9 -1.202044 -90.146760
7 1 4 -81.574047 -56.555229
3 1 5 75.690820 60.620104 0.980271
4 5 9 1.512746 89.531420
5 2 5 0.071305 79.784122
6 2 4
1 3 6 90.288492 72.829660
6 4 4
7 1 10 -51.991614 -6.732535
5 5 6 0.087950 71.164056

out:
21029.678359
120220.146461
-14.172376 -63.985055
95006.134951
52111.910474
2.849235 79.987632
35.040886 148.667661
302347.683678
*/